/ 最近 .rdf 追記 編集 設定 本棚

脳log[20240727]



2024年07月27日 (土) [AtCoder] 今日は日本レジストリサービス(JPRS)プログラミングコンテスト2024#2(AtCoder Beginner Contest 364)があった。先週(20240720)と似たようなことを書いてもいいかな。Ruby にとっては D 問題が難しすぎて TLE が解消できなかった。D と F を見比べて、F の方に見込みがあると思って F 問題に8割方集中していたが時間内には解けなかった。終了 11 分後に F 問題の AC が出た。あとちょっとで解けたと思えばこそ得点にならなくてくやしい。■A 問題「Glutton Takahashi」。サンプルの2で示されているのは親切だけど、そこそこ殺意の高い罠がありますね。全部食べたあとで気持ち悪くなるパターンがある。sweet\nsweet を検索していたのを修正して sweet\nsweet\ns を検索するようにした。■B 問題「Grid Walk」。やります。B 問題にしては実装が重め。グリッドのサイズが小さくても実装量が減るわけではないんだよね、当たり前だけど。そこんとこ承知してくれているかな?■C 問題「Minimum Glutton」。C 問題で DP か? と一瞬身構えたけど、最小値を求めるということで、2通りの貪欲法を比較するだけ。大丈夫です、最大値を求める DP 問題は E にあります。■D 問題「K-th Nearest」。二分探索してくださいという問題にしか見えなくて他に方法が思いつかないんだけど、制限時間3秒のところ、(1割増しの 3.3 秒ではなく) 3.22 秒かかって TLE だったので、220 ms ほどの高速化が必要。どうするの?■E 問題「Maximum Glutton」。C 問題の難しい版。甘さとしょっぱさの組み合わせを状態のキーにはできないけど、甘さとしょっぱさのどちらかと個数を組み合わせてキーにすることはできる。甘さをキーの1つにしたら、しょっぱさを最小化する DP をする。これもサンプルが教えてくれたんだけど、A 問題と同じ罠があります。同じ罠に落ちかけました。■F 問題「Range Connect MST」。どういう風に辺を引くことになるのか、イメージがしづらい。木なので本数は N+Q-1 本だと決まっている。それを最大 N×Q の組み合わせからどう選ぶと全域木になるのか。あれこれ考えてようやく納得できたのは、i=1..Q において、Li..Ri のあいだに連結成分が g 個あるなら、g 本の辺を引くのだということ。両手の 5+5 本の指を使って考えると、それで N+Q-1 本の辺が選ばれるようだったのでそう思った。答えが合わなくて時間内に提出できなかったんだけど、原因がしょうもなくて、貼り付けた BIT のイニシャライザにある初期化コードが今回は不要だと思って削除したけど、削除してはいけなかったという、そういう理由で答えが合わなかった。たとえばヒープだと、ソート済みの配列を内部データにする場合、初期化の必要がない。ソート列はそのままでヒープの要件を満たしている。だけど BIT の内部データは違うんだなあ。解ける問題だったなあ。1から数年前の自分なら解いていたなあ。■自分のすべての提出。最近ユーザー名の横に表示されるへの字。ノイズではあるんだけど、水色でもまだ 1500 台を維持しているなという慰めにもなっているもよう。■精進。D 問題。Q のループの中で二分探索をする中で二分探索を2回行って TLE を出していた。二分探索の上限を指定せずに TLE×11。上限を指定して TLE×7。最も内側にある2個目の二分探索を省けるときは省くようにして TLE×1。最内の2個目の二分探索を完全に省いて AC。これが 1765 ms なんだけど、Ruby で 627 ms で解いている人がいるんだよね。気になるけどネタバレは嫌だ。■D 問題。別解。提出 #56088391 (AC / 325 Byte / 340 ms)。log 1つでできると読んだので、k 幅のウィンドウを二分探索で置いてみた。判定条件は、右端の要素が初めて左端の要素よりも b から遠くなる瞬間。そのひとつ手前では逆に、左端の要素が右端の要素より b から遠くなっている。この両者を比較する。二分探索の高速化っていうと尺取りが定番なんだけど、だから昨日はその方面で TLE 回避策を考えたりしてたんだけど、この D 問題はウィンドウの幅 k がクエリごとに可変だから、尺取りはうまくない。今日の提出では同じ二分探索を使っていてあまり違いを感じないんだけど、よく見れば二重の log が一重に減っている。log 1つの差ってたしかにこれくらい微妙なものではあった。Pairs を解いていたときに書いている。「log ひとつの差ってちょっとした違いなんですよ。ちょっと見る角度を変えるだけ」。提出したあとでもういちどさっき読んだブログを読み返すと、まんま自分の提出がやっていることが書いてある。「初めて左端のが遠くなった場所を見つけてその一つ前も(存在すれば)候補なので比較して」。なんかよくわからんなあと思いながら読んでいたけど、実際今も「自分より1離れたもの同士を比較」「長さが1短い区間を考えて」「初めて右のが遠くなったら左のを付け加えてそれがそのまま答え」とかよくわからないんだけど、必要なことは一度読んだだけで頭の中に入ってるんだな! 自分では思い出せないだけで。