最終更新: 2020-12-03T19:37+0900
先月28日土曜日の振り返り。ARC なので A 問題が 300 点からスタートする。2問解けたらまあまあという感じ。配点が同じ 300 点、400 点でも、ABC のと比べるとちょっと手強い印象を持っている。
時間は長めの2時間。ABC と違って C、D、E、F 問題にはだいたい取り付く島さえないので、時間が足りなくなるということはまずない。簡単すぎるテストと難しすぎるテストは時間が余るという点で共通する。
上の階に上がるのに階段と廊下の2種類の手段があるというのが不思議な設定だが、床の高さが半階分ずれた2棟が上りと下りのスロープで結ばれていると解釈するツイートを読んだ。なるほど。ところですべてのフロアが渡り廊下で連結されているなら、それも水平1本ではなく三角形で繋がっているなら、2棟は一体の構造物として設計されているのでは? そのとき「廊下」はどのような形態になりますか?
11分ちょっとで提出している。こうだったらこうだな、こうだったらああだなと考えながらとりあえず書き出してみてそれをそのまま提出した。
考えたこと。
節約する本数 k から n (の下限)を求める式が n ≧ Σ(k+1) = k+k*(k+1)/2
だということはすぐにわかったけど、n が与えられたときに k の最大がいくつになるのかを求めるのに、sqrt を使ってずっと考えていた。B 問題に取りかかってから最初の提出まで 46 分。
n の制約上限は 10^{18} であり、(10**18).bit_length は 60。なんだ探索すればいいじゃないと気がついたらもう問題は残っていなかった。
RPS って Rock, Paper, Scissors なんだな、たぶん。本番中はよく考えなかったけど。
k の上限は高々 100 ではあるけれど、2^k 通りの勝敗を考えるには大きすぎる数だ。まあ頭の中で考える分にはあまり関係がないので、トーナメントをシミュレーションして、その際に文字列 s のどの部分を参照するのかを確かめていた。優勝者の手、準優勝者の手、準々優勝者の手……がどこからやってくるのか、逆方向のシミュレーションもした。
最初の提出まで 30 分。C 問題という段階で解けなくてもともとなので、あせる理由はどこにもない。
残り時間は 30 分だったけど考えるだけ考えた。
四角形の座標移動をまず考えた。
ここまで考えたが、この安定した移動に入る前と出るときに何手かかるのか数え切れなかった。B 問題のことを思い出して探索すればいいじゃない、ということには気がついたが、その探索がどういう形になるのかおぼろにも想像ができなかった。
というわけで D 問題はひとつの提出も用意できないまま放置している。
あ、3通りじゃないや、5通りある。じゃあいろいろ変わってきちゃうね。
え? 7通りある? だから最初から最後まで機械に数えさせるべきなんだな。