/ 最近 .rdf 追記 設定 本棚

脳log[AtCoder: 2019-09-07~]



2019年09月07日 (土) あなたの性格タイプ: 管理者 ISTJ-T/外向(3%)↔内向(97%)/直感(17%)↔現実(83%)論理型(76%)↔道理型(24%)/計画(76%)↔探索(24%)/自己主張(35%)↔慎重(65%)」■自分に当てはめてみてなかなかのことが書いてあるけど、他の分類にも似たり寄ったりの感想を持つ可能性がないではない。何より、こういうのってセルフイメージしか明らかにできないと思うんだけど、どうなんだろう。こう答えたからこう書いてあるわけで、言い換え以上の何かが得られているのだろうか。そしてそれは実像に一致しているのだろうか。■日本語で論理型↔道理型と翻訳されていた軸は英語ではTHINKING↔FEELINGだった。え、「道理」ってそういう意味? 絶対に解り合えない人種がこの訳語の背後に垣間見えたんだけど、ただの間違いだったと言って。■琴線に触れたフレーズ「他人が瞬時に状況を飲み込み、行動することを期待します。優柔不断な人には我慢できませんが、自分が選んだ方針が空理空論で対抗されると、さらにすぐに苛立ちます。特にその異論が重要な詳細を無視している場合はなおさら」「自分の評判を重んじるのなら、質の高い人間と交際すべし」「悪い仲間といるよりも、一人でいる方が良い」■不寛容で、体裁を取り繕うことにも意欲がない人間なので、器の小ささ、性格の悪さを露呈させられる、自覚させられる人間からは、距離を置きたいと思っている。■建築家型の性格ページで引用されていた。「意見は認められない。情報に基づいた意見は認められる。誰も無知になる資格はない。――Harlan Ellison」 最高にかっこいいセリフじゃあないか。関連しない?>20190815■■■これもやった。「16Test - 精密性格診断テスト」 結果(443KiB)>「フクロウ型(INTP).png」■解説の「フクロウ型のように未来や抽象的な世界を常に探求している人」という文言は理解に苦しむ。未来より現実、理論より経験を選んだし、直観型(29%)↔感覚型(71%)の解説はこうだ。「直観型はイメージや概念を取り扱うことが得意であり、感覚型は五感を通した体験を得意とする傾向があります。」■「かなり高い創造性」の一方「閃き力がない」というのも矛盾するようでどう捉えていいのかわからない。創造性に対する閃きっていうのは即興性に比重があるのだろうか。たしかにそれは皆無。■そして残念なことに性格診断なので「全動物タイプの中でも最も高い知性を持っていると言われている研究者のようなタイプです」と言われても、知性を計られたわけではなく……。

最終更新: 2020-05-06T23:24+0900

[AtCoder] AtCoder Beginner Contest 140 E問題

 E - Second Sum

Rubyによる提出一覧

  1. 終了時刻までに Ruby で AC(Accepted) を取った提出はひとつもなかった。
  2. 自分は TLE(時間切れ) はおろかひとつの正解にも届いていなかった。

    Ruby で1秒未満で終了するのはシンプルな100万回くらいのループだという感覚があるから、100000の2乗になりうるループをそのまま書いても無理だという予想は最初からあった。

  3. 例によってお風呂の中で考えました。
  4. 最初の提出は sorted と almost_sorted に分類される入力が TLE(時間切れ)だった。他はAC。
  5. ちょっとした小細工を付け加えた次の提出で AC になった。(753ms)

たいへん嬉しい。Beginner には Beginner なりの達成があるものよ。

 Rubyで一番速いのはこれ。345ms>https://atcoder.jp/contests/abc140/submissions/7415625

自分は sorted/almost_sorted に対策した余分なデータを「小細工」として追加したけど、この投稿では問題に最適なインデックスを作って利用してるんじゃないかと思う。そこの差が large に分類される入力を処理する時間の差として現れている。

  • 保存してる値が違う。検索のための補助データでなく、検索結果を保存してる。
  • scan メソッドで ps を rs にマップする際に、その処理の最中に、rs の値を利用している。

    たぶんここで処理時間に差が出た。

    しかし変数jがあまりに謎めいていて、よくわからん。

    あ、値としてのjと、添え字としてのjがあるのか。でもわからん。

    Pの要素を順になめてインデックスを作成していく。ある要素のインデックスを作成するとき、すでに処理済みの隣の要素を見る。その要素が処理中の要素より大きければ、インデックスでポイントすべきはそれ。小さければ、それのインデックスが指す要素が次に見るべき要素。それが処理中の要素より~(以下同じ)。

 「Rubyで一番速いの」を真似して勉強。318ms>https://atcoder.jp/contests/abc140/submissions/7444759

中身はパクりだけど形式にはちょっとした違いを加えた。

元のコードの scan メソッドにはひとつ思うところがあって、ref パラメータが実質的にフラグとして機能しているのではないかと、異なる2種類のコードを scan メソッドとしてひとつに融合するために使われているのではないかと、思わないではなかった。

2回分の手続きをまとめたものではなく、関数として抽出できる機能は何かと考えた結果が Next メソッド。Gen メソッドはささいなトリック(※)を自動化するだけ。※Next メソッドの3つのパラメータ _O1, _I, o の多重化に関すること。

時間制限がある中で考えることではないけども。

 C++で驚異の提出がこれ。7ms>https://atcoder.jp/contests/abc140/submissions/7391384

C++だから速いのではなく、長さ N の一重ループしかないから速い。加えて何がすごいって、C++ なのに Ruby で書いたのより短いこと。

そうなのだ。アホの子は余計なことをして自分から問題を難しくするのだ。

 C++は置いておいてPythonのこれ。173ms>https://atcoder.jp/contests/abc140/submissions/7411285

これもループは一重。ただし最初のソートが重い。

戦略は、P の要素を小さい順に処理すること。そういう限定条件をつけることで、LU, RU という自分のこれまでのスクリプトでおなじみのインデックスを、随時局所的にアップデートするだけでも有効性を保ちながら使うことができる。有効性は限定されていて、インデックスの正しい要素を参照すれば正しい結果が得られる、というもの。

  1. LU と RU のすべてのインデックスが、P の左隣(右隣)の要素をポイントするように初期化する。(これは P の最小の要素については正しい)
  2. P の要素を処理するたびに、その要素をポイントしていたインデックスを張り替える。(処理済みの要素をインデックスから除外することで、未処理の P の要素のうち最小の要素について、インデックスは常に正しい)

まねまね。172ms>https://atcoder.jp/contests/abc140/submissions/7499717

実のところ + [N, N]+ [-1, -1] は完全なるコピペ。+ [N]+ [-1] ではダメだったものがどうしてこれで正しい答えにつながるのか、さっぱり理解していない。RU[N] と LU[-1] に番兵を1個置くのと2個置くのの違いとは。

 真打ち。C++ のあれ

Pythonので本質は語られている。それに付け加えるのは、P の要素に関する前提知識を利用すればソートにかけるコストを減らせるよねってこと。

99ms>https://atcoder.jp/contests/abc140/submissions/7499891

インタープリタ型言語でトップクラスの速さになった。

 まとめ。Rubyによる実行時間の変遷。

TLE(sorted/almost_sorted)P の各要素についてナイーブに LU, RU を検索。
753 msソート済みの入力に対策して LX, RX を導入し、LU, RU の検索を早期に打ち切るように。
318 msLU, RU の検索順を前提に組み込み、それまでの検索結果を利用することで検索時間を短縮。
172 msP の要素の処理順を小さい順と決め、インデックスが有効な対象を未処理の P の要素のうち最小のものに限定することで、インデックスは検索して作成するものではなく、初期化し(決まったエントリを)更新するものに。
99 msP の要素を小さい順に並べるのに、P の要素がとりうる値を利用する。

与えられた条件を貪欲に利用することと、データが有効な条件を限定して無駄になることをしないこと、かな。

最初から結論が見えていては自分ほどにはこの問題を楽しめまい。ふっふっふ。