最終更新: 2011-03-21T02:43+0900
Problem 31と同じ問題。その解答(20110125p01.03)。ただし、Problem 31には通用した俺の解法では全然終わらない。
Target = 100 a = [1] + [0]*Target (Target-1).downto(1){|pick| 0.upto(Target-pick){|i| a[i+pick] += a[i] } } p a[Target]
素数ごとに一から再試行してるけど計算量はたかがしれてた。
require 'mathn' prime_gen = Prime.new primes = [] prime_gen.each{|prime| primes.push prime a = [1] + [0]*prime primes.each{|pr| 0.upto(prime-pr){|i| a[i+pr] += a[i] } } answer = a.index{|x| 5000 < x } if answer p answer exit end }
まったくひどい解答。76から続くシリーズの締めらしく、何も考えないと計算量が膨大になる。手続き的な解法から一歩進む必要がある。それか一分ルールを無視して何時間もかけて良しとするか。
Target = 100000 a = [1] + [0]*Target (Target-1).downto(1){|pick| 0.upto(Target-pick){|i| a[i+pick] += a[i] } } p a.index{|x| x%1_000_000 == 0}
最終更新: 2012-02-29T17:34+0900
前のバージョンはここ(20110312p01.02)。step2を最適化*すると倍くらい速くなって 1分半(ウチのPC基準で。C++だとコンマ1秒)。それに伴い素因数の組み合わせを求める必要がなくなったので、100万要素の配列の配列が 100万要素の Fixnum配列になってメモリ使用量が再び数MBレベルになった。
LIMIT = 1_000_000 pfs = Array.new(LIMIT+1, 1) count = LIMIT*(LIMIT+1)/2 - 1 # 1) 2からLIMIT以下の分母 d につき d 通りの分子を予め計上する。 2.upto(LIMIT){|d| # 0) 2からLIMIT以下の分母 d に対して、 print d,"\r" d.step(LIMIT, d){|_| pfs[_] *= -d } if pfs[d] == 1 # 2) 分子が d で分母が d の倍数になるものを加減する。 count += pfs[d]/pfs[d].abs * (LIMIT/d)*(LIMIT/d+1)/2 if pfs[d].abs == d } p count
一週間後にはこのコードが理解できなくなってること請けあい。
ググった>「Dreamshire | Project Euler Problem 72 Solution」。φ関数の値を合計するとかで、Rubyでも10秒未満。Problem 69に出てきた関数だけど、その問題はインチキしたから理解してないんよね。
LIMIT = 1000000 phi = (0..LIMIT).to_a 2.upto(LIMIT){|n| n.step(LIMIT, n){|m| phi[m] *= (n-1.0)/n } if phi[n] == n } p phi.inject(&:+).floor-1
繰り返しの構造は似てるのにこの実行時間の差はなんだ? と思ったら print d,"\r"
の有無だけだった。俺のも同等に速い。
* 全体でみると同じ数字を足したり引いたりを繰り返してる気がしたので個々の dに特有の値だけを加減するように。
最終更新: 2011-03-14T23:14+0900
昨日(20110312p01)の延長。Problem 72の解答と同じ部分より違う部分を見つける方が難しい。
LIMIT = 12000 pfs = Array.new(LIMIT+1){ [] } count = 0 2.upto(LIMIT){|d| # 0) LIMIT以下のすべての分母 d に対して、 print d,"\r" d.step(LIMIT, d){|_| pfs[_] << d } if pfs[d].empty? n_min, n_max = d/3, (d-1)/2 # (n_min, n_max] next unless n_min < n_max count += n_max - n_min # 1) とりあえず一通りの分子を計上し、 # 2) 8分の6など通分可能なものを差し引きする。 (1..(pfs[d].size)).each{|r| cms = pfs[d].combination(r).map{|pf| pf.inject(&:*) } count -= (-1)**(r%2+1) * cms.map{|cm| n_max/cm - n_min/cm }.inject(&:+) } } p count
問題文のヒントを最大限に利用したが数分かかる。総当たりでなく組み合わせ単位でテストしてその順列を計上したらマシになるかも。順列を考えるときに先頭の桁に 0を置くようなミスを犯しそうだがね。
factorial = [1,1] # [0!,1!,...] factorial.push(factorial.size*factorial.last) until 9 < factorial.size chain_length = lambda{ memo = { 169 => 3, 363601 => 3, 1454 => 3, 871 => 2, 45361 => 2, 872 => 2, 45362 => 2 } f = lambda{|start| return memo[start] if memo.has_key?(start) next_ = start.to_s.chars.map{|c| factorial[c[0]-?0] }.inject(&:+) return memo[start] = 1 + (start == next_ ? 0 : f.call(next_)) } }.call p (1...1_000_000).inject(0){|sum,n| sum += 1 if chain_length.call(n) == 60; sum }
最終更新: 2011-03-15T00:15+0900
「HCF(n,d)=1」には用語の説明があると思ったんだけどなかった。n/dの nと dは最大公約数が 1の既約分数だとすると意味がとおるので HCF=Highest Common Factorだと決めた(でっちあげ)。
分数とはなんぞやだとか切断だとか小難しく考えてしまったが(実際には考えられるほど知らない)、ワンライナーだった。3/7より少し小さい100万個の分数を小数になおして、一番小さいものを見つける。有理数にして比較しないのは時間がかかるから。公約数をみつけたりする時間だろうか。
require 'rational' p Rational(*(2..1_000_000).inject([0,1]){|answer,d| answer[0]/answer[1].to_f < (d*3-1)/7/d.to_f ? [(d*3-1)/7,d] : answer })
Project Euler Problem #71 « KeyZero Conversation
分数を初めてならった小学生が必ず間違える分数の足し算(通分せずに分母どうし分子どうしを加算する)にこんな意味があるとか!
分単位のお時間がかかります。(訳:一時間はかからないけど……)
何倍も速くなるので「Integer#prime_division」を使う代わりに 100万要素の配列を使ってる。トレードオフで使用メモリは数MBから 100MB超になるが。 小手先のチューンよりアルゴリズムを改良しろってのはもっともだけど、かなしいかな、できることとできないことがあるのです。
LIMIT = 1_000_000 pfs = Array.new(LIMIT+1){ [] } count = 0 2.upto(LIMIT){|d| # 0) LIMIT以下のすべての分母 d に対して、 print d,"\r" count += d-1 # 1) とりあえず d-1 通りの分子を計上し、 d.step(LIMIT, d){|_| pfs[_] << d } if pfs[d].empty? # 2) 8分の6など通分可能なものを差し引きする。 (1..(pfs[d].size)).each{|r| cms = pfs[d].combination(r).map{|pf| pf.inject(&:*) } count -= (-1)**(r%2+1) * cms.map{|cm| (d-1)/cm }.inject(&:+) } } p count
Ruby 1.9からバックポートされてきた(のだと思われる見覚えのないメソッド) cycle, tap, combination, permutation, productといったメソッドが便利だ。あとは自然数を無限に生成し続ける無限リストのようなものをどれだけ簡単に書けるかだ。なにかショートカットがあるのだろうか。これでは長すぎる。
Enumerable::Enumerator.new(lambda{|&block| n=0; loop{ block.call n+=1 } }, :call).each{|x| p x }
それと、block.callの部分を yieldにできないのもわかりにくい。Procと blockと lambdaの微妙な違いによるものなのだろうか。
Rubyによる他所の Project Eulerの解答をみていてこういう書き方も知ってるけど、カウンタが Floatになっちゃうのが不満。
1.upto(1/0.0){|n| p n }
あれ? Fixnumだ。Floatになるのは stepだった。
1.step(1/0.0){|n| p n } # 1.0, 2.0, 3.0,...
明示的に Fixnumの増分: 1を指定しても n は Float. この違いはなんだろう。
cycleの使い道として zipを想定していたが拒否されてしまった。
irb> [1,2,3,4,5].zip([0]) => 1, 0], [2, nil], [3, nil], [4, nil], [5, nil irb> [1,2,3,4,5].zip([0].cycle) TypeError: can't convert Enumerable::Enumerator into Array from (irb):2:in `zip' from (irb):2 from :0 irb> RUBY_DESCRIPTION => "ruby 1.8.7 (2010-01-10 patchlevel 249) [i386-mswin32]"
最終更新: 2011-03-12T02:24+0900
分母を一番深いところから順番に計算していく。
a = ([2] + (1..33).map{|k| [1,2*k,1] }.inject(&:+)).reverse denom, numer = *a.inject([0,1]){|nd, x| [nd[1], x*nd[1]+nd[0]] } require 'rational' p Rational(numer, denom).numerator.to_s.chars.inject(0){|sum,c| sum - ?0 + c[0] }
xを増やしながらの総当たりで、最後に見つかった Dが答え。と思ったんだけど Dが見つかるペースがどんどこ落ちていく。一日以上かけても 969個の Dのうち 270個が残ってる。
Problem 18の延長で以前解いた。
前問に引き続いて、数学でもプログラミングでもなく、オラクルで。
最終更新: 2011-03-12T03:46+0900
"exactly five" って書いてあるから、同じ数字の並べ替えで作れる立方数が 6以上あってもダメだと思うんだ。
memo = Hash.new{|h,k| h[k] = [] } n = 0 k_length = 1 loop{ n += 1 cube = n*n*n k = cube.to_s.split(//).sort.join('') if k.length != k_length answer = memo.values.select{|cubes| cubes.size == 5 } if not answer.empty? answer.each{|cubes| p cubes } exit end memo.clear k_length = k.length end memo[k] << cube }
# (x-1)/x <= log10(n) < 1 (n = ?,?,...) count = 0 x = 0 loop{ x += 1 boundary = (x-1.0)/x lower_bound = (1..9).to_a.reverse.find{|n| Math.log10(n) < boundary } || 0 count += 9 - lower_bound break if lower_bound == 9 } p count
またまた「Dreamshire | Project Euler Problem 63 Solution」の解答を検討してみたい。二重のループなんてない。logの計算だって 9回だけ。どういうことだ?
というストーリーをひねり出した。「9は 10より 0.046(=1-0.954)程度小さい数だ」ってくだりがいかにも苦しい。小数だからごまかしがきいてるけど、ぴったり 10一個分小さくなる場合は n桁、n-1桁、どっち? (たぶんまだ n桁だな。1^1
がそう)
ともあれ、明かされてみればワンライナーの問題だったよ。
p (1..9).inject(0){|sum,n| sum + (1/(1-Math.log10(n))).floor }
常用対数を直接求めるメソッドが用意されてるあたりが Rubyだなとおもた。
連分数っていうらしい。a_n
の求め方、a += 1 while 0 <= r - (n - d*(a+1))**2
の条件部分が判然としない。スクリプト中のコメントにあるように、対象としてるルートの係数が必ず約分されて 1になることも理解できてない。
def next_frac(r, n, d) # (√r + n) / d = a + 1 / [(√r + n_) / d_] a = 0 a += 1 while 0 <= r - (n - d*(a+1))**2 d_ = (r - (n - d*a)**2) / d raise if (r - (n - d*a)**2) % d != 0 # why OK? n_ = -(n - d*a) return a, r, n_, d_ end def period_of(r) rnd = [r, 0, 1] arr = [] loop{ a, *rnd = next_frac(*rnd) arr << rnd period = arr.size-1 - arr.index(rnd) return period if 0 != period return 0 if rnd[2] == 0 # √r is rational. } end count = 0 1.upto(10000){|n| count += 1 if period_of(n) % 2 == 1 } p count
ところで、この問題を解くときに Math.sqrtを使うのってインチキくさくない?(だから使ってないんだけど)
最終更新: 2011-03-02T05:24+0900
何も考えずにコーディングしただけ。一瞬 CPUが考え込みます。
generators = [ lambda{ n = 0 lambda{ n+=1; n*(n+1)/2 } }.call, lambda{ n = 0 lambda{ n+=1; n*n } }.call, lambda{ n = 0 lambda{ n+=1; n*(3*n-1)/2 } }.call, lambda{ n = 0 lambda{ n+=1; n*(2*n-1) } }.call, lambda{ n = 0 lambda{ n+=1; n*(5*n-3)/2 } }.call, lambda{ n = 0 lambda{ n+=1; n*(3*n-2) } }.call, ] # 数を準備 d4polynumbers = generators.map{|g| () while (p = g.call) < 1000 a = [p] a.push(p) while (p = g.call) < 10000 a } # 端緒(の集まり) bunch_of_chain = d4polynumbers[d4polynumbers.size-1].map{|p| [[p, d4polynumbers.size-1]] } # 端緒を伸ばすもの extender = lambda{|chain, pool| xx = chain.last.first.to_s[-2,2] ( (0...(pool.size)).to_a - chain.map{|_| _.last } ).map{|i| [i, pool[i]] }.map{|i, nums| nums.find_all{|num| num.to_s[0,2] == xx }.map{|num| chain + [[num, i]] } }.inject(&:+) } # 伸ばしていく (d4polynumbers.size-1).times{ bunch_of_chain = bunch_of_chain.map{|chain| extender[chain, d4polynumbers] }.inject(&:+) } # 輪っか? bunch_of_cyclic_chain = bunch_of_chain.reject{|chain| chain.first.first.to_s[0,2] != chain.last.first.to_s[-2,2] } # 出力 bunch_of_cyclic_chain.each{|chain| puts chain.map{|a,_| a }.join("\t") puts chain.map{|_,b| "P#{b+3}" }.join("\t") puts "sum: #{chain.map{|a,_| a }.inject(&:+)}" }
先は長いのにもう失速してる。「良いもの。悪いもの。: Project Eulerを100問解いてみた」テトレーションとか聞いたこともない単語なんだけど……。
中学生の時に 3^{50}
の一の位は何かという問題が出た。でも Problem 188は何乗したらいいかもわからない。下手の考え休むに似たりっていうけどどうしたもんかなあ。ない知恵を絞るのも悪くないと思うんだけど。
最終更新: 2011-02-20T21:45+0900
10%未満っていうのは絶妙なポイントなのかな。全然 9%未満に落ちない。
def prime? x return false if x < 2 return true if x == 2 quo, rem = x.divmod(2) return false if rem == 0 t = 1 while t < quo t += 2 quo, rem = x.divmod(t) return false if rem == 0 end return true end x, t = 1, 0 primes_on_diagonals = 0 loop{ t += 2 3.times{ x += t primes_on_diagonals += 1 if prime? x } x += t puts "#{primes_on_diagonals} primes out of #{2*t+1} (#{100*primes_on_diagonals/(2*t+1)}%, side length=#{t+1})" exit if 100 * primes_on_diagonals / (2*t+1) < 10 }
encrypted_text = [79,59,12,...,22,73,0,0] # last 2 elements are padding. text = "" 0.step(encrypted_text.size-1, 3){|i| text += (encrypted_text[i+0] ^ (71 ^ " "[0])).chr text += (encrypted_text[i+1] ^ (79 ^ " "[0])).chr text += (encrypted_text[i+2] ^ (68 ^ " "[0])).chr } text.chop!.chop! # remove padding puts text puts "sum: #{text.bytes.inject(:+)}"
1を満たす素数を発見しながらそれを使って、1の集合から2へ、2の集合から3へ、3の集合から4へ、要素をプロモートしていけばよさそう。
# 寝る前にやる。
寝てしまった。答えが出ない。素数を分割するんでなく、素数のペアを組み合わせて素数かどうか判定した方がいいかもしれない。そろそろ身にしみて理解してきたけど、素数って印象よりありふれ過ぎてる。
ちょっとくらい時間がかかってもいーやって考えてたけど、何日もかけても四つ組みが 7つと、五つ組が 0個しか見つからないことがわかったので、1分以内に答えを出すべくもうちょっと考える。
def prime? x return false if x < 2 return true if x == 2 quo, rem = x.divmod(2) return false if rem == 0 t = 1 while t < quo t += 2 quo, rem = x.divmod(t) return false if rem == 0 end return true end set012 = [[],[3],[]] require 'mathn' Prime.new.each{|prime| break if 10000 <= prime dmod3 = prime.to_s.bytes.inject(0){|sum,byte| sum+byte-?0 } % 3 set012[dmod3] << prime } set1, set2 = set012[1], set012[2] set2[0] = 3 # set1 = [3,7,13,...] # set2 = [3,5,11,...] make_group_of_two = lambda{|set| pair = {} 0.upto(set.size-2){|i| (i+1).upto(set.size-1){|j| if prime?("#{set[i]}#{set[j]}".to_i) and prime?("#{set[j]}#{set[i]}".to_i) (pair[[set[i]]]||=[]) << set[j] end } } return pair } group1, group2 = make_group_of_two.call(set1), make_group_of_two.call(set2) extend_group = lambda{|g| group = {} g.each_pair{|rest, last1s| # rest + one of last1s = group last1s.each{|last1| next1s = last1s gg, out = rest.clone, last1 gg.size.times{|i| gg[gg.size-1-i], out = out, gg[gg.size-1-i] next1s &= g[gg]||[] } if ! next1s.empty? group[rest+[last1]] = next1s end } } return group } group1, group2 = extend_group.call(group1), extend_group.call(group2) # sets of 3 primes group1, group2 = extend_group.call(group1), extend_group.call(group2) # sets of 4 primes group1, group2 = extend_group.call(group1), extend_group.call(group2) # sets of 5 primes printer = lambda{|rest, last1s| last1s.each{|last1| puts %[#{rest.inject(&:+)+last1}:\t#{rest.join("\t")}\t#{last1}] } } group1.each(&printer) group2.each(&printer)
分単位の時間で答えはでたけどもその五つ組の合計が意外に大きくて、10000以上の素数を組に加えても最小の組み合わせになりうる。計算量の増大の仕方がひどくて、これ以上桁数を増やして試行するのは無理だというのに。
じゃないよね。
\begin{array}{rcl}
q & = & a_0 + 10a_1 + 10^2a_2 +……+ 10^na_n \quad\mbox{(}a_n\mbox{は 0以上 9以下の整数)}\\
& = & (a_0 + a_1 + a_2 +……+ a_n) + 9a_1 + 99a_2 +……+(10^n-1)a_n\\
\end{array}
a_0+a_1+a_2+……+a_n
が 3の倍数の整数 qは 3の倍数です。
たしか 4の倍数についても同じような判定規則があった気がした。忘れたけど。
たしか 5の倍数についてもどこかの桁を見るだけで(略
4は 100を作るから下2桁だけ。5は 10を作るから下1桁だけを見ればいい。
一番時間を食ってるのは make_group_of_two. 異なる二要素の組み合わせということで n^2-n
回の素数判定を行ってる。素数判定自体も nの大きさに比例する(※1:1ではないけど)ループを持っている。大変なはずだ。
とりあえず、今の素数判定より賢い素数判定があるのはわかってるけどわからないので使ってない。(注:わかる => 知ってる, 理解できる) 丁寧にコードを読んだらわかるかもだけどそれはチートっぽい。大学入試の数論関係の問題だって、解答をチラ見したら誰だって理解できんだよ。
最終更新: 2011-02-12T22:42+0900
Bignumはできれば使いたくない。aが 100未満なので 8桁ずつ。
answer = [0, 0, 0] # sum, a, b 1.upto(99){|a| digits = "1" 1.upto(99){|b| sum = 0 carry = 0 0.step(digits.size-1, 8) {|i| l, r = [0, digits.size-i-8].max, digits.size-i carry, digits8 = (digits[l...r].to_i * a + carry).divmod(100000000) digits8 = "00000000#{digits8}"[-8,8] digits[l...r] = digits8 digits8.each_byte{|byte| sum += byte - ?0 } } if carry != 0 digits8 = carry.to_s digits = digits8 + digits digits8.each_byte{|byte| sum += byte - ?0 } end if answer[0] < sum *answer = sum, a, b end } } p answer
とかいいながら Bignum。
count = 0 numer, denom = 1, 1 1000.times{ numer, denom = numer + denom + denom, numer + denom count += 1 if numer.to_s.length != denom.to_s.length } p count
最終更新: 2011-02-10T04:56+0900
ただただ、手と CPUを動かすだけで精一杯。(頭は役に立ってないよ)
primes = [2] is_prime = lambda{|x| result = true primes.each{|prime| quo, rem = x.divmod(prime) if rem == 0 result = false break end break if quo < prime } return result } # replace 2 digits or 3 digits. キ・メ・ウ・チ def find_8_prime_family(a) return [] if a.size < 8 a.map!{|x| x.to_s } h = Hash.new{|h,k| h[k] = [] } # 2 digits 0.upto(a.first.size-3){|i| (i+1).upto(a.first.size-2){|j| h.clear a.each do |prime| if prime[i] == prime[j] h[prime[0...i]+prime[(i+1)...j]+prime[(j+1)...(prime.size)]].push prime end end h.each do |_,v| return v if v.size == 8 end } } # 3 digits 0.upto(a.first.size-4){|i| (i+1).upto(a.first.size-3){|j| (j+1).upto(a.first.size-2){|k| h.clear a.each do |prime| if prime[i] == prime[j] and prime[j] == prime[k] h[prime[0...i]+prime[(i+1)...j]+prime[(j+1)...k]+prime[(k+1)...(prime.size)]].push prime end end h.each do |_,v| return v if v.size == 8 end } } } return [] end x = 1 start = 0 # start of primes of a width. loop { x += 2 next unless is_prime.call x print "#{x}\r" if primes[start].to_s.length != x.to_s.length a = find_8_prime_family primes.last(primes.size-start) if ! a.empty? puts a.sort.join(" ") exit end start = primes.size end primes.push x }
桁数ごとに探索範囲を決めて、総当たり。
問題が xについても同じ数の組み合わせであることを求めてると思わなくてチェックしてないけど、結果的に xも 2x,3xなんかと同じ数字で構成されてた。
digits = 10 loop { digits *= 10 (digits/2).upto((digits*10-1)/6){|x| print "#{x}\r" x2 = (x*2).to_s.split(//).sort if [3,4,5,6].all?{|n| x2 == (x*n).to_s.split(//).sort } then puts [1,2,3,4,5,6].map{|n| x*n }.join(" ") exit end } }
浮動小数点数なんてファジーなものを使っちゃったよ。Math.sqrtの使用をこれまで頑なに避けてたのも、結果が Floatになるからだったり。
count = 0 23.upto(100){|n| cmb = 1.0 1.upto(n/2){|r| cmb /= r cmb *= (n-r+1) count += (n-r == r) ? 1 : 2 if 1_000_000 < cmb } } p count
問題文が難しかった。3割ぐらいは推測。
あっけなく答えが出たので to_s.reverse.to_i
みたいなのをなくすべく、Integer#reverse
を自作してみたら、かえって遅くなったし。
class Integer # 負数については考えてない。 def reverse x = 0 this = self begin this, rem = this.divmod(10) x = 10*x + rem end while 0 < this x end end count = 0 10.upto(10_000-1){|x| is_lychrel = true 50.times{ x = x + x.reverse if x == x.reverse is_lychrel = false break end } count += 1 if is_lychrel } p count
最終更新: 2011-02-09T20:16+0900
時間がかかるので逐一進捗を表示してる。この問題に魔法の一手なんてあるのかね。
primes = [] is_prime = lambda{|x| result = true primes.each{|prime| quotient, remainder = x.divmod(prime) if remainder == 0 result = false break end break if quotient < prime } return result } 2.upto(999_999){|x| primes.push x if is_prime.call x } puts "#{primes.size} primes under 1 million." work = primes.dup step = 0 primes_found = [] live_elements = work.size while 0 < live_elements step += 1 primes_found.clear live_elements = 0 print "step #{step}\r" 0.upto(work.size-1-step){|i| work[i] += primes[i+step] if work[i] < 1_000_000 live_elements += 1 primes_found.push work[i] if is_prime.call work[i] end } if primes_found.empty? elsif primes_found.size < 10 puts "step #{step}: #{primes_found.join ' '}" else puts "step #{step}: #{primes_found.size} primes" end end
魔法の一手はなくても……
答えを出した後でググるのが楽しい。フォーラムは読んでないけど、多分これ以上ないっていうような答えが書いてありそうで、面白くなさそうな気がしてる。(理解できない数学的知識が使われてたら、print XXXXXXX(answer); って書かれてるのと変わらないから)
最終更新: 2011-02-09T01:05+0900
昨日よりちょっとはマシになったかと。アホすぎた素数判定を、素因数の数を数える処理と一体化した。でも 10秒以上かかります。
primes = [2] have4primefactors = [] num_of_factors = lambda{|x| prime_factors = 0 primes.each{|prime| quotient, remainder = x.divmod(prime) if quotient < prime prime_factors += 1 break end if remainder == 0 prime_factors += 1 break if 4 < prime_factors x /= prime while x % prime == 0 break if x == 1 end } return prime_factors } x = 2 loop { x += 1 print "#{x}\r" case num_of_factors.call(x) when 1 primes.push x have4primefactors.clear when 4 have4primefactors.push x p have4primefactors.first if have4primefactors.length == 4 else have4primefactors.clear end }
恥ずかしいほどまっすぐで乱暴なスクリプトだけど、コンソールの表示も待てないくらいノーウェイトで答えが出るんだから仕方がない。
p (1..1000).inject(0){|sum,x| sum + x**x }
10秒くらいかかります。
primes = [] is_prime = lambda{|x| result = true primes.each{|prime| quotient, remainder = x.divmod(prime) if remainder == 0 result = false break end break if quotient < prime } return result } 2.upto(9999){|x| primes.push x if is_prime.call x } primes_4digit = primes.last(primes.length - primes.rindex{|x| x < 1000 } - 1) 0.upto(primes_4digit.size-1){|i| p = primes_4digit[i] # next if p == 1487 (i+1).upto(primes_4digit.size-1){|j| q = primes_4digit[j] r = q + q - p next if p.to_s.split(//).sort != q.to_s.split(//).sort or q.to_s.split(//).sort != r.to_s.split(//).sort k = nil (j+1).upto(primes_4digit.size-1){|_k| if r == primes_4digit[_k] k = _k break elsif r < primes_4digit[_k] break end } if k puts "#{p} #{q} #{r}" # exit end } }
最終更新: 2011-02-07T05:28+0900
squares[]はソート済みなのに .include?()でそれを活かせないのが不満。
primes = [] # Omit 2. Even prime is not needed. squares = [1] def prime?(n) return false if 0 == n%2 3.step(n/2, 2) {|x| return false if 0 == n%x } return true end x = 1 loop { x += 2 squares.push((squares.size+1)**2) if squares.last < x if prime?(x) primes.push x next end print "#{x}\r" next if primes.any?{|prime| prime < x and squares.include?((x-prime)/2) } p x # answer break }
何の工夫もないのですんごく時間がかかる。
def prime_gt2?(n) return false if 0 == n%2 x, upper_bound = 3, n/2 while x <= upper_bound upper_bound, remainder = n.divmod(x) return false if 0 == remainder x += 1 end return true end primes = [2] have4primefactors = [] have4primefactor = lambda{|x| num_of_factors = 0 primes.each{|prime| if x % prime == 0 num_of_factors += 1 break if 4 < num_of_factors x /= prime while x % prime == 0 end } return num_of_factors == 4 } x = 2 loop { x += 1 print "#{x}\r" if prime_gt2? x primes.push x have4primefactors.clear elsif have4primefactor.call(x) have4primefactors.push x p have4primefactors.first if have4primefactors.length == 4 else have4primefactors.clear end }