x
をくっつけたら2番目のルールは無視できる。あとは T を元にして S をスキャンする。■D 問題「Divide Interval」。問題文が難しいよね。文というか式が。何度も読んで理解したところでは、ある2の冪乗 W があって、その2冪 W でアラインされた幅 W を持つ範囲が良い数列だと言っている。この説明でわかりやすくなったかは疑問。2つの2冪 w と W があって、w<W のとき、幅 W の良い数列の中と隣に、幅 w の良い数列はきっちり隙間なく整列するので、とりあえず最大の W を L...R の範囲内に見つけて、その左右に W 未満で範囲に収まる最大の w を再帰的に求めていけばいいように思う。考察半分実装半分でどちらもやや難しくやや大変だから、普段より高めの 450 点だったかと思う。22 分かけている。ビット演算で何かをやろうとしてあきらめて 60 通りの全探索に切り替えるまでに時間を使った。■E 問題「Weighted Tic-Tac-Toe」。メモ化再帰でとりあえずやってみたら通りました。盤面は3進数で。Takahashi と Aoki を区別するために手番を知りたくなって、どうやって知るか困ったけど、残りの白マスの偶奇で判別できた。メモ化関数の戻り値の仕様次第では二人の名前を区別する必要がないと思うのだけど、そう期待して実装を始めたのだけど、勝者の名前を返すような仕様にしてしまったので困ってしまっていた。終了条件が2つあって、一方の条件ではスコアが無関係だからそういう仕様に誘導されてしまった。24 分かけている。かけた時間から判断すると、D と E がどちらも 450 点だったのはまこと適切だったと思う。■F 問題「Subsequence LCM」。解けてないよ。愚直解法で TLE×14/AC×23。A の中の同一要素をまとめて処理すると TLE×12/AC×25。2つだけ AC が増えた。LCM でフィルタしていた部分を GCD で判定するようにして不用意に大きすぎる値を生み出さないようにも注意したけど、たぶんそれによる改善はあんまりない。これ以上のアイデアはない。■■■D 問題。最初の提出 #52331543 はせっかく定義した IJ 関数が一度しか呼び出されていなくてもったいないので、それを LR 関数として再定義してスクリプトの後半でも利用するようにした。提出 #52388999。16 行くらいあった後半部分が3行になった。while 文が2つある構成は同じだけど、ループの本体が関数を呼び出すだけの1行になった。各所で読んだのだけど、セグメント木についてはまったく頭に浮かびませんでした。セグメント木の図を思い浮かべれば問題の理解が早かったと思う。でもそれが思い浮かんだ時点でもう問題を理解してるよね。oox
の繰り返しを必要な長さ出力するだけだった。だけど各 i についてそのつど判定する方が簡単だったのでそのように。■B 問題「Farthest Point」。距離の比較をするのにルートはいらない。Ruby には Math.hypot (sqrt をとる) の2乗の値を返すメソッドがあると思ってリファレンスを見たけど見つからなかった。たぶん Complex#abs2 のことが頭にあったのだと思う。解法は愚直総当たりで最初に見つかったものを答えにする。素直に書けば「番号が小さいもの」という条件は自然に満たされる。■C 問題「Colorful Beans」。色でグループ化してグループ内の最小値の最大値を出力する。要は悲観主義者が最もましな選択肢を選んだ場合がどうなるかという話。この C 問題まではプログラミング言語の扱いが問われている。やりたいことが書けますかと。Ruby で参加しているなら、C 問題は Array#group_by を知っていますか、という問題だった。■D 問題「Medicines on Grid」。グラフですよね。S と T と薬のマスを頂点として、同じ頂点を2度通らずに S から T へ到達できますかという問題。これは訪問済み頂点を記録して DFS でやろうか。そして頂点間の繋がりがグリッドで与えられていて、探索をしなければ明らかにならない2段構えになっている。最初はきれいに2段に分けて解こうとしたんだけど、面倒くさくなった。最初のグリッド探索のついでに到達可否の判断をしてもいいじゃないか。プライオリティキューを使わずにテキトーにキューに探索地点を追加してエネルギーを記録していった。これに 50 分くらいかけたんですよ。それはダメ。■E 問題「Minimize Sum of Distances」。全方位木 DP。頭が破壊されました。こういうのは終了したあとでじっくり落ち着いて書きたい。終了3分後>提出 #52114566 (RE)。頂点番号を1始まりのままにしていたのに、0 から N-1 を処理対象にしてしまったせいでエラーになっている。終了 13 分後>提出 #52115938 (AC)。結局惜しくはなかった。今日になって全体が見通せる状態でイチから書いたもの>提出 #52179331 (AC)。最初からこれがすらすら書けないのは理解が遅いってことだよ。..
(終端を含む) に代えて ...
(終端を含まない) を使うこと。要するに、長さ1の部分文字列を表現する方法が確保されているかどうかが WA と AC を分けている。一般的な文字列検索と正規表現検索との違いで顕在化しがちな問題として、特定の位置の空文字列を表現する方法があるかどうかというものがある。普通のテキスト検索では長さ0の文字列を探すことも見つけることもないので、表現能力の不足に気がつけないことがある。C++ のイテレータが開区間ではなく半開区間なのは、こういう理由からもよくできてるなと思う。いいものはどんどんまねしよう。そしてこれはトリビアだけど、サイズ N の配列 A があるとき、A の末尾の要素は A[N-1] であり A[N] の読み取りは不正だけど、A+N が A+N-1 より大きいことが C 言語の規格で保証されているらしい。でないと範囲が表現できないもんね。■C 問題「Ideal Holidays」。配点が +50 の 350 点ということでやや難しめだと予想できる。実際その通り。予定が A+B 周期で何日目に当たるかを求めてソートして、順番に各要素が休日の1日目にあたると仮定して N 個後ろの予定が A 日目までに収まっているかを判定する。提出直後に同じ日に複数の予定がある場合に正しく判定できないことに気が付いたのだけど、今見ると制約によって重複が排除されていた。優しい。そして今一度よく考えると、D%(A+B) したときに重複が生まれる可能性がある。重複する予定が3つあったとして、最初に処理する予定に限って正しく判定ができるので、結果的に問題がなかったのだ。■D 問題「Popcount and XOR」。C は最大で 60 個のビットを持っており、立っているビットを X または Y のどちらかに割り振る。割り振るのはどちらでも良いが、popcount(C)<a+b のときは C のビットが立っていない位置で X と Y の両方にビットを割り振って打ち消し合わせる必要があるので、a と b の大きい方に 1 のビットを割り振るのがよい。最初に WA×1/RE×1 を出したが(#51837959)。7分後に AC (#51842648)。両方の提出でやっていることは同じ。ただ、RE/WA を出した方では、不可能なケースを最初に判定するようにしていた。一方の AC 提出の方では、操作をしたあとで、結果が満足しているかどうかで出力を切り替えた。要するに、不可能なケースの判定に漏れがあったのだ。おそらく C の0のビットが a, b の大きさに対して不足している場合を弾き損ねていた。最初に提出する前に不安はあった。だから普段書かない assert、……はないから raise を埋め込んで前提が間違っていないかを確かめていた(その結果 RE が出ている)。残念。■E 問題「Set Add Query」。所要時間によれば CD より簡単でしたよね。まず、各時点での集合のサイズというのが操作をシミュレートすることで予め求めておける。次に、各 x (1≦x≦N) について集合に含まれていた区間を調べる。これはクエリを順番になぞりながら値 x からクエリ番号の列を逆引きできるように記録をとればよい。クエリの列から2つずつ取り出したものが x が集合に含まれていた区間。■今回は水 diff と青 diff が問題セットに含まれていなかった。今日の自分は緑 diff 以下の簡単な問題に滅法強いマンとしてレートを稼いでいる。仮にここに水 diff の問題がプラスされると、水 diff の問題にはそこそこ時間がかかるので、水 diff 以下の問題に滅法強い人にタイム差をつけられて相対的にパフォーマンスが下がる。さらに青 diff の問題がプラスされると、自分は青 diff の問題は時間内にほとんど解けないので、青 diff が解ける人に点差をつけられて、やはり相対的に自分のパフォーマンスが下がる。しかし水も青もなかったから、自分を含めて黄 diff が解けないグループがひとまとめにされて、緑 diff の問題で優劣が判定された。それで青パフォをもらうのは、なんだかなーだよね。最終更新: 2024-04-03T08:25+0900
AtCoder をプラットフォームとして利用する有志コンであり、AtCoder の問題ではないけども、競プロカテゴリとして AtCoder に分類しています。
リアルタイム参加はしていない。ABCDFHIE をこの順に解いたのでふりかえって書く。
出現数を数える。Array#tally そのもの。
2本の線が一致することはないので、必ず3つか4つに分割される。ソートするなりしてうまく分類する。
うまくできませんでした。
数列が a,1,b であるとする。そうすると、b=a+1、a=b+1、b=a+1 と操作を繰り返すことで無限に大きな要素を作ることができる。A[1]=1 の場合であっても、A[1] を無限大にすることができる。初期数列が1以上の要素を含んでいることが必要十分条件だと思いました。証明は知りません。
間違えました。最初は、2つの要素を足して1以上になることが必要十分条件だと思ったんだよね。証明は知らないとか言ってっからだよ。
すごーく難しかった。4回間違えた。順番に WA×13、WA×3、WA×2、WA×1。
まずは問題を理解する。X 座標と Y 座標について、正負どちら方向に移動することもできるけど、移動量の絶対値が一致していなければいけない。
どういう操作を構成するか。最初からずっと想定していたのは、まずは X 座標もしくは Y 座標の、ずれが小さい方の数字を一致させる。その後はずれが大きい方を、偶数回の操作で一致させる。偶数回というのは、先に合わせた方の座標をずらしたくないので、移動量を等分して打ち消し合わせるということ。
この考え方で WA×1 まで行ったのだけど、一方のずれに対して他方のずれが非常に大きい場合に答えが微妙に合わなくなる。
結論を書くと、最初に目指すべきポイントは近い方の座標ではなかった。偶数回の操作の折返し点を目指すべきだった。要するに、X 座標のずれが DX、Y 座標のずれが DY だとして、DX<DY なら最初に目指すべき点は DX+(DY-DX)/2 だったということ。DX だけ移動してから DY-DX を偶数回で移動するのではなく、DX+(DY-DX)/2 移動してから (DY-DX)/2 移動する操作を構成するのだった。
ARC で 400 点ぐらい配点してもいい問題だと思います。400 点というのは、数学的センスがある人は瞬殺するけども、自分は1時間以上苦しむという、そういう問題。
任意の部分列について成り立たなければいけないので、一番極端なケースを想定する。つまり、N=1 のケースと N=2 のケース、そして中央値に対して極端に平均を下げるような列を。
N=1 のケースでは中央値と平均値が一致する。N=2 のケースでは a1<a2 なる列の中央値が a1 なので平均値が必ず中央値を上回る。N>=3 の場合で N が偶数のとき、中央値より大きい値の数が小さい値の数より1つ多くなるので、平均値は大きくなりがち。だから N が奇数の場合だけを考える。もっといえば、N=3 で成り立つなら N=5 でも N=7 でも成り立つと思うんだけど、そんな気がするだけ。
N=3 のケース。a1<a2<a3 としても構わないのでそうする。平均を下げたいので a1 は最低の 0。a3 がいくつなら平均が a2 以上になるだろうか。2×a2 が最低ライン。N の制約が 20 万以下ということだけど、要素が倍々に増えていくなら ai≦10^9 の制約から実質的な上限は 30 程度になる。
問題文の表現にひっかかりがありますね。「氷の張ってある道をなるべく通りたくないです
」「氷の張ってある道を通る時間を最小化して街 N に移動するとき
」。要するに氷が張っている道を通ることもあると言っている。01BFS みたいに、氷が張っている道を0回通る場合の最小値、1回通る場合の最小値、2回の場合の……、を N にたどり着くまで繰り返して求めれば良さそう。うまくやればいらないかもだけどプライオリティキューを使ってダイクストラ法をした。
01BFS ということでこれは2本のキューを切り替えながら使った。
氷の上を何回通ったかと経過時間とを1つの値にエンコードすることで、キューを1本だけ使う普通のダイクストラ法になった。
まずは問題を理解する。ある要素を1つ後ろに移動し、その際に K を加算する、というのが操作。
最初は後ろにある要素に操作を繰り返して大きくすることで昇順の列を作ることを考えた。最低2つの要素があれば、交互に操作対象に選ぶことで任意の回数 K を加算することができる。2つの要素の初期の差を解消したり拡大したりすることはできないけど、1回の操作で昇順にできるので問題ない。
これの問題は K=1 で Ai が上限の 10^9 に近いとき。初期数列が A1=10^9、A2=1、A3=1 だったとして、A2 と A3 に操作を繰り返して A1 以上にすることは可能だけど、操作回数が 50 万を超えてしまう。
次に考えたのは、最小値を列の前に持ってくること。i 番目に最小値があるとして、i-1 から 1 まで下りながら操作することで A1 から A_{i-1} にそれぞれ K を加算しつつ、Ai を先頭に持ってくることができる。以降これより後ろの数列に対してどんな操作を繰り返したとしても、Ai より小さい値が後ろに出現することはなく昇順が保たれる。
初期数列が降順にソートされている場合が最悪ケースだけど、N*(N-1)/2 回くらいの操作で昇順になる。N≦1000 だからちょうど操作上限の 50 万回を下回るくらい。
しょうもないミスをした。
vector の任意の位置から値を追い出すときに、末尾の要素とスワップしてからポップするというテクニックがある。順番に意味がないときは使って損がない。
順番に意味はあったのだ。順番が保存されていないと正しい操作対象が選べない。いや、自分は壊れた順番の中で正しい対象を選んでいたのだけど、そのせいで勘違いしたのだけど、ジャッジが正しさを検証できなければ意味がない。
300 点だけど難しかった。これが解けたのが嬉しくて今日の日記を書いているところがある。
とある赤い亀さんの日記を読みました。
学びのある問題だった。
俺も「とっぽい」って言ったら、どこの方言ですか❓って言われた事あるわ」ってコメントを見つけて笑っちゃったよ。自分が「とっぽい」という言葉を初めて見たのはスーパードクターKで、それ以外では記憶にないよ。さておき、
「衒」は売る意」とあった。繋がりはない? あ、『衒学始終相談』の2巻が来月発売です。これは競プロの話題なんですね。著者の人を知ったのが『レストー夫人』という別の作品を通してで、それをおすすめしていたのがたしか kinaba さんだったので。■以前にもちょっと書いたけど、自分は「
if is[is_j]<i%Sz
に等号が付いていたこと。時間に追われる中でその微妙な差違に気が付くのは無理でしょう。なまじ解けただけに時間不足が残念でならない。■コンテスト成績証。青パフォでプラスではある。しかしものたりないなあ。このチャンスを逃した今、明日の ARC からまたもう何度目にもなる落ち目が始まる可能性だってあるのに。C*A[i]-A[i]
で計算される。これの部分累積和が最大になる範囲を求める。場合分けはしない。判断をすれば判断ミスをするし、分岐すれば分岐した先それぞれでミスをするので。部分累積和の最大を求める方法だけど、名前が付いているらしかった。「Kadane's Algorithm | 最大部分配列 問題 - Ark's Blog」。名前で特定するより自分でひねりだすほうが簡単では? ダイクストラ法もね、優先順位付き(重み付き) BFS という、実態に即した命名の方が理解を促す面があると思うんだよね、固有名詞で特定するよりもね。■B 問題「Bought Review」。星は増やすことしかできない。星を水増しして総数を増やすことに意味はない。それを確認すると無駄な情報が見えてくる。星3の数はいらない。星123を増やす選択肢もいらない。星1と星2を星4と星5で打ち消すための配分を考える問題。二分探索が頭をよぎって線形性を探したけど、実は星4を2つ増やすコストと星5を1つ増やすコストの大小で即座に優先すべき選択が決定する。ぴったり打ち消すのがいいか、1つ星を余らせた方が効率的にも絶対的にも得かは、条件次第で判断が分かれるところ。最適な式を探るより候補を3つ並べる方が簡単。■D 問題「Digit vs Square Root」。小さい N に対して答えを列挙してみると、答えが見つかる範囲が 10 の冪乗とそこからいくつか下った狭い範囲に偏っていることがわかる。1、10、9、8、100、99、98、1000、999、……といった具合。あとはがんばる。ランダム入力に対して愚直解法と答えを突き合わせて1時間20分かかった。つらい。実装しながら Project Euler の Problem 63 Powerful Digit Counts に似ているなと思っていた(20110308p01.02)。■日記を書いているあいだに結果が出た。コンテスト成績証。ARC にはレートを吸われるばかりなので、微増は勝ち。例えば 1,173,9090 は “Neq Number” です。」とあるが、1と1が並んでいるのに Neq Number であるとはどういうことかと、Neq Number の定義を何度も何度も読み直してしまった。この日記を書いている今気がついたことだけど、3桁区切りと4桁区切りが混在している不自然さを読み取らなければいけなかったのですか。■C 問題「Not Median」。どういうときに区間の幅が伸びていくかというと、ある数の左側にある数列が、ある数との比較において高低高低高低高低……と並んでいて、反対側には低高低高低高……と並んでいるときに、どういう区間を選んでもある数が中央値になることが避けられない。問題は、そういう均衡を破る最初の位置を効率良く見つける方法。過程を飛ばして結論を書くと、高高となる位置と低低となる位置を記録する2本の BIT を使った。高低は相対的なので処理順を1から N の順にした。そうすると最初は低低の位置はどこにもなく、すべての位置が高高の並びになる。これをスタートにして BIT を更新しながら答えを計算した。ところで、左右の端にある要素については効率良く数える方法がわからなかった。例えば入力が
4 3 5 6 2 1 7
で、4を中央値にしたくないとしよう。4との相対で数列を書き直すと 4 低 高 高 低 低 高
となる。高高や低低の並びを検索したとしても項数を奇数に揃えた途端に釣り合いがとれて4が中央値になってしまう。4 の左に低もしくは高のどちらでも存在していれば即座に答えが確定できるのだけど。だから両端の要素については線形時間を使って答えを出した。■B 問題「Make Many Triangles」はね、解ける人は 30 分くらいで解くみたいだけど(Ruby では2人)、自分にはさっぱりだった。3点以上が乗る直線を引いてグループを作ったとして、どういう規則でトリオを作っていけばいいのか、そういうやり方で答えが出せるのか、何もわからなかった。複数のグループに属する点の扱いもわからなかった。■■■@2024-03-14 B 問題。E8 さんの解説画像を見ました(それと類人猿の人の)。ダメなケースから考えていけば良かったみたい。たとえば、全てが一直線上に乗っているとき、三角形は1つも作れない。では1つだけ直線から外れていたら? 直線上から2点を選んで1つだけ作れる。以下順々にくりかえし。直線上の点が先になくなったときは、直線上にない点を選べばいいんです(※)。テキトーに3点を選べば大体の場合において三角形は作れるんです。だから作れないケースから考えている。そのためには最も多くの点が乗る直線を1本見つければいい(※)。提出 #51223271 (AC / 272 Byte / 342 ms)。へー、なるほどねー。ネタバレを読んだあとではいくらでも知ったかぶりができますけどね。当日は早々に見切りをつけて C 問題に専念していたわけで、次にこのような問題が出るときも、やっぱり途方に暮れて全く手が出ないと思うな。■※を付けた2つの部分に飛躍がある。自分では超えられない飛躍が。たとえば直線上の点がなくなったとき、他に選べる点が他の1つの直線に乗っている点だけだった場合は? わかりやすく2本の直線に半分ずつの点が乗っているとき、交互に2個と1個、1個と2個で組を作っていけば無駄なく三角形を作っていけることはわかるけど、いつでもこんな風にうまくいくだろうか。1本の直線にだけ注目して答えにたどり着くことが、やっぱりまだできない。